

nanopq [https://github.com/matsui528/nanopq] documentation

Installation

You can install the package via pip. This library works with Python 3.5+ on linux.

$ pip install nanopq

Contents

	Tutorial
	Basic of PQ

	Decode (reconstruction)

	I/O by pickling

	Optimized PQ (OPQ)

	Relation to PQ in faiss

	API Reference
	Product Quantization (PQ)

	Distance Table

	Optimized Product Quantization (OPQ)

	Convert Functions to/from Faiss

Indices and tables

	Index

	Module Index

	Search Page

Tutorial

Basic of PQ

This tutorial shows the basic usage of Nano Product Quantization Library (nanopq).
Product quantization (PQ) is one of the most widely used algorithms
for memory-efficient approximated nearest neighbor search,
especially in the field of computer vision.
This package contains a vanilla implementation of PQ and its improved version, Optimized Product Quantization (OPQ).

Let us first prepare 10,000 12-dim vectors for database, 2,000 vectors for training,
and a query vector. They must be np.ndarray with np.float32.

import nanopq
import numpy as np

X = np.random.random((10000, 12)).astype(np.float32)
Xt = np.random.random((2000, 12)).astype(np.float32)
query = np.random.random((12,)).astype(np.float32)

The basic idea of PQ is to split an input D-dim vector into M D/M-dim sub-vectors.
Each sub-vector is then quantized into an identifier of the nearest codeword.

First of all, a PQ class (nanopq.PQ) is instantiated with the number of sub-vector (M)
and the number of codeword for each sub-space (Ks).

pq = nanopq.PQ(M=4, Ks=256, verbose=True)

Note that M is a parameter to control the trade off of accuracy and memory-cost.
If you set larger M, you can achieve better quantization (i.e., less reconstruction error)
with more memory usage.
Ks specifies the number of codewords for quantization.
This is tyically 256 so that each sub-space is represented by 8 bits = 1 byte = np.uint8.
The memory cost for each pq-code is M * log_2 Ks bits.

Next, you need to train this quantizer by running k-means clustering for each sub-space
of the training vectors.

pq.fit(vecs=Xt, iter=20, seed=123)

If you do not have training data, you can simply use the database vectors
(or a subset of them) for training: pq.fit(vecs=X[:1000]). After that, you can see codewords by pq.codewords.

Note that, alternatively, you can instantiate and train an instance in one line if you want:

pq = nanopq.PQ(M=4, Ks=256).fit(vecs=Xt, iter=20, seed=123)

Given this quantizer, database vectors can be encoded to PQ-codes.

X_code = pq.encode(vecs=X)

The resulting PQ-code (a list of identifiers) can be regarded as a memory-efficient representation of the original vector,
where the shape of X_code is (N, M).

For the querying phase, the asymmetric distance between the query
and the database PQ-codes can be computed efficiently.

dt = pq.dtable(query=query) # dt.dtable.shape = (4, 256)
dists = dt.adist(codes=X_code) # (10000,)

For each query, a distance table (dt) is first computed online.
dt is an instance of nanopq.DistanceTable class, which is a wrapper of the actual table (np.array), dtable.
The elements of dt.dtable are computed by comparing each sub-vector of the query
to the codewords for each sub-subspace.
More specifically, dt.dtable[m][ks] contains the squared Euclidean distance between
(1) the m-th sub-vector of the query and (2) the ks-th codeword
for the m-th sub-space (pq.codewords[m][ks]).

Given dtable, the asymmetric distance to each PQ-code can be efficiently computed (adist).
This can be achieved by simply fetching pre-computed distance value (the element of dtable)
using PQ-codes.

Note that the above two lines can be chained in a single line.

dists = pq.dtable(query=query).adist(codes=X_code) # (10000,)

The nearest feature is the one with the minimum distance.

min_n = np.argmin(dists)

Note that the search result is similar to that
by the exact squared Euclidean distance.

The first 30 results by PQ
print(dists[:30])

The first 30 results by the exact scan
dists_exact = np.linalg.norm(X - query, axis=1) ** 2
print(dists_exact[:30])

Decode (reconstruction)

Given PQ-codes, the original D-dim vectors can be
approximately reconstructed by fetching codewords

X_reconstructed = pq.decode(codes=X_code) # (10000, 12)
The following two results should be similar
print(X[:3])
print(X_reconstructed[:3])

I/O by pickling

A PQ instance can be pickled. Note that PQ-codes can be pickled as well because they are
just a numpy array.

import pickle

with open('pq.pkl', 'wb') as f:
 pickle.dump(pq, f)

with open('pq.pkl', 'rb') as f:
 pq_dumped = pickle.load(f) # pq_dumped is identical to pq

Optimized PQ (OPQ)

Optimized Product Quantizaion (OPQ; nanopq.OPQ), which is an improved version of PQ, is also available
with the same interface as follows.

opq = nanopq.OPQ(M=4).fit(vecs=Xt, pq_iter=20, rotation_iter=10, seed=123)
X_code = opq.encode(vecs=X)
dists = opq.dtable(query=query).adist(codes=X_code)

The resultant codes approximate the original vectors finer,
that usually leads to the better search accuracy.
The training of OPQ will take much longer time compared to that of PQ.

Relation to PQ in faiss

Note that
PQ is implemented in Faiss [https://github.com/facebookresearch/faiss/wiki/Faiss-building-blocks:-clustering,-PCA,-quantization#pq-encoding--decoding],
whereas Faiss is one of the most powerful ANN libraries developed by the original authors of PQ:

	faiss.ProductQuantizer [https://github.com/facebookresearch/faiss/blob/master/ProductQuantizer.h]: The core component of PQ.

	faiss.IndexPQ [https://github.com/facebookresearch/faiss/blob/master/IndexPQ.h]: The search interface. IndexPQ = ProductQuantizer + PQ-codes.

Since Faiss is highly optimized, you should use PQ in Faiss if the runtime is your most important criteria.
The difference between PQ in nanopq and that in Faiss is highlighted as follows:

	Our nanopq can be installed simply by pip without any third party dependencies such as Intel MKL

	The core part of nanopq is a vanilla implementation of PQ written in a single python file.
It would be easier to extend that for further applications.

	A standalone OPQ is implemented.

	The result of nanopq.DistanceTable.adist() is not sorted. This would be useful when you would like to
know not only the nearest but also the other results.

	The accuracy (reconstruction error) of nanopq.PQ and that of faiss.IndexPQ are almost same [https://github.com/matsui528/nanopq/blob/master/tests/test_convert_faiss.py].

You can convert an instance of nanopq.PQ to/from that of faiss.IndexPQ
by nanopq.nanopq_to_faiss() or nanopq.faiss_to_nanopq().

nanopq -> faiss
pq_nanopq = nanopq.PQ(M).fit(vecs=Xt)
pq_faiss = nanopq.nanopq_to_faiss(pq_nanopq) # faiss.IndexPQ

faiss -> nanopq
import faiss
pq_faiss2 = faiss.IndexPQ(D, M, nbits)
pq_faiss2.train(x=Xt)
pq_faiss2.add(x=Xb)
pq_nanopq2 is an instance of nanopq.PQ.
Cb is encoded vectors
pq_nanopq2, Cb = nanopq.faiss_to_nanopq(pq_faiss2)

API Reference

Product Quantization (PQ)

	
class nanopq.PQ(M, Ks=256, metric='l2', verbose=True)

	Pure python implementation of Product Quantization (PQ) [Jegou11].

For the indexing phase of database vectors,
a D-dim input vector is divided into M D/M-dim sub-vectors.
Each sub-vector is quantized into a small integer via Ks codewords.
For the querying phase, given a new D-dim query vector, the distance beween the query
and the database PQ-codes are efficiently approximated via Asymmetric Distance.

All vectors must be np.ndarray with np.float32

	Jegou11

	
	Jegou et al., “Product Quantization for Nearest Neighbor Search”, IEEE TPAMI 2011

	Parameters

	
	M (int) – The number of sub-space

	Ks (int) – The number of codewords for each subspace
(typically 256, so that each sub-vector is quantized
into 8 bits = 1 byte = uint8)

	metric (str) – Type of metric used among vectors (either ‘l2’ or ‘dot’)
Note that even for ‘dot’, kmeans and encoding are performed in the Euclidean space.

	verbose (bool) – Verbose flag

	
M

	The number of sub-space

	Type

	int

	
Ks

	The number of codewords for each subspace

	Type

	int

	
metric

	Type of metric used among vectors

	Type

	str

	
verbose

	Verbose flag

	Type

	bool

	
code_dtype

	dtype of PQ-code. Either np.uint{8, 16, 32}

	Type

	object

	
codewords

	shape=(M, Ks, Ds) with dtype=np.float32.
codewords[m][ks] means ks-th codeword (Ds-dim) for m-th subspace

	Type

	np.ndarray

	
Ds

	The dim of each sub-vector, i.e., Ds=D/M

	Type

	int

	
fit(vecs, iter=20, seed=123, minit='points')

	Given training vectors, run k-means for each sub-space and create
codewords for each sub-space.

This function should be run once first of all.

	Parameters

	
	vecs (np.ndarray) – Training vectors with shape=(N, D) and dtype=np.float32.

	iter (int) – The number of iteration for k-means

	seed (int) – The seed for random process

	minit (str) – The method for initialization of centroids for k-means (either ‘random’, ‘++’, ‘points’, ‘matrix’)

	Returns

	self

	Return type

	object

	
encode(vecs)

	Encode input vectors into PQ-codes.

	Parameters

	vecs (np.ndarray) – Input vectors with shape=(N, D) and dtype=np.float32.

	Returns

	PQ codes with shape=(N, M) and dtype=self.code_dtype

	Return type

	np.ndarray

	
decode(codes)

	Given PQ-codes, reconstruct original D-dimensional vectors
approximately by fetching the codewords.

	Parameters

	codes (np.ndarray) – PQ-cdoes with shape=(N, M) and dtype=self.code_dtype.
Each row is a PQ-code

	Returns

	Reconstructed vectors with shape=(N, D) and dtype=np.float32

	Return type

	np.ndarray

	
dtable(query)

	Compute a distance table for a query vector.
The distances are computed by comparing each sub-vector of the query
to the codewords for each sub-subspace.
dtable[m][ks] contains the squared Euclidean distance between
the m-th sub-vector of the query and the ks-th codeword
for the m-th sub-space (self.codewords[m][ks]).

	Parameters

	query (np.ndarray) – Input vector with shape=(D,) and dtype=np.float32

	Returns

	Distance table. which contains
dtable with shape=(M, Ks) and dtype=np.float32

	Return type

	nanopq.DistanceTable

Distance Table

	
class nanopq.DistanceTable(dtable, metric='l2')

	Distance table from query to codewords.
Given a query vector, a PQ/OPQ instance compute this DistanceTable class
using PQ.dtable() or OPQ.dtable().
The Asymmetric Distance from query to each database codes can be computed
by DistanceTable.adist().

	Parameters

	
	dtable (np.ndarray) – Distance table with shape=(M, Ks) and dtype=np.float32
computed by PQ.dtable() or OPQ.dtable()

	metric (str) – metric type to calculate distance

	
dtable

	Distance table with shape=(M, Ks) and dtype=np.float32.
Note that dtable[m][ks] contains the squared Euclidean distance between
(1) m-th sub-vector of query and (2) ks-th codeword for m-th subspace.

	Type

	np.ndarray

	
adist(codes)

	Given PQ-codes, compute Asymmetric Distances between the query (self.dtable)
and the PQ-codes.

	Parameters

	codes (np.ndarray) – PQ codes with shape=(N, M) and
dtype=pq.code_dtype where pq is a pq instance that creates the codes

	Returns

	Asymmetric Distances with shape=(N,) and dtype=np.float32

	Return type

	np.ndarray

Optimized Product Quantization (OPQ)

	
class nanopq.OPQ(M, Ks=256, metric='l2', verbose=True)

	Pure python implementation of Optimized Product Quantization (OPQ) [Ge14].

OPQ is a simple extension of PQ.
The best rotation matrix R is prepared using training vectors.
Each input vector is rotated via R, then quantized into PQ-codes
in the same manner as the original PQ.

	Ge14

	
	Ge et al., “Optimized Product Quantization”, IEEE TPAMI 2014

	Parameters

	
	M (int) – The number of sub-spaces

	Ks (int) – The number of codewords for each subspace (typically 256, so that each sub-vector is quantized
into 8 bits = 1 byte = uint8)

	verbose (bool) – Verbose flag

	
R

	Rotation matrix with the shape=(D, D) and dtype=np.float32

	Type

	np.ndarray

	
M

	The number of sub-space

	Type

	int

	
Ks

	The number of codewords for each subspace

	Type

	int

	
verbose

	Verbose flag

	Type

	bool

	
code_dtype

	dtype of PQ-code. Either np.uint{8, 16, 32}

	Type

	object

	
codewords

	shape=(M, Ks, Ds) with dtype=np.float32.
codewords[m][ks] means ks-th codeword (Ds-dim) for m-th subspace

	Type

	np.ndarray

	
Ds

	The dim of each sub-vector, i.e., Ds=D/M

	Type

	int

	
eigenvalue_allocation(vecs)

	Given training vectors, this function learns a rotation matrix.
The rotation matrix is computed so as to minimize the distortion bound of PQ,
assuming a multivariate Gaussian distribution.

This function is a translation from the original MATLAB implementation to that of python
http://kaiminghe.com/cvpr13/index.html

	Parameters

	vecs – (np.ndarray): Training vectors with shape=(N, D) and dtype=np.float32.

	Returns

	(np.ndarray) rotation matrix of shape=(D, D) with dtype=np.float32.

	Return type

	R

	
fit(vecs, parametric_init=False, pq_iter=20, rotation_iter=10, seed=123, minit='points')

	Given training vectors, this function alternatively trains
(a) codewords and (b) a rotation matrix.
The procedure of training codewords is same as PQ.fit().
The rotation matrix is computed so as to minimize the quantization error
given codewords (Orthogonal Procrustes problem)

This function is a translation from the original MATLAB implementation to that of python
http://kaiminghe.com/cvpr13/index.html

If you find the error message is messy, please turn off the verbose flag, then
you can see the reduction of error for each iteration clearly

	Parameters

	
	vecs (np.ndarray) – Training vectors with shape=(N, D) and dtype=np.float32.

	parametric_init (bool) – Whether to initialize rotation using parametric assumption.

	pq_iter (int) – The number of iteration for k-means

	rotation_iter (int) – The number of iteration for learning rotation

	seed (int) – The seed for random process

	minit (str) – The method for initialization of centroids for k-means (either ‘random’, ‘++’, ‘points’, ‘matrix’)

	Returns

	self

	Return type

	object

	
rotate(vecs)

	Rotate input vector(s) by the rotation matrix.`

	Parameters

	vecs (np.ndarray) – Input vector(s) with dtype=np.float32.
The shape can be a single vector (D,) or several vectors (N, D)

	Returns

	Rotated vectors with the same shape and dtype to the input vecs.

	Return type

	np.ndarray

	
encode(vecs)

	Rotate input vectors by OPQ.rotate(), then encode them via PQ.encode().

	Parameters

	vecs (np.ndarray) – Input vectors with shape=(N, D) and dtype=np.float32.

	Returns

	PQ codes with shape=(N, M) and dtype=self.code_dtype

	Return type

	np.ndarray

	
decode(codes)

	Given PQ-codes, reconstruct original D-dimensional vectors via PQ.decode(),
and applying an inverse-rotation.

	Parameters

	codes (np.ndarray) – PQ-cdoes with shape=(N, M) and dtype=self.code_dtype.
Each row is a PQ-code

	Returns

	Reconstructed vectors with shape=(N, D) and dtype=np.float32

	Return type

	np.ndarray

	
dtable(query)

	Compute a distance table for a query vector. The query is
first rotated by OPQ.rotate(), then DistanceTable is computed by PQ.dtable().

	Parameters

	query (np.ndarray) – Input vector with shape=(D,) and dtype=np.float32

	Returns

	Distance table. which contains
dtable with shape=(M, Ks) and dtype=np.float32

	Return type

	nanopq.DistanceTable

Convert Functions to/from Faiss

	
nanopq.nanopq_to_faiss(pq_nanopq)

	Convert a nanopq.PQ instance to faiss.IndexPQ [https://github.com/facebookresearch/faiss/blob/master/IndexPQ.h].
To use this function, faiss module needs to be installed [https://github.com/facebookresearch/faiss/blob/master/INSTALL.md].

	Parameters

	pq_nanopq (nanopq.PQ) – An input PQ instance.

	Returns

	A converted PQ instance, with the same codewords to the input.

	Return type

	faiss.IndexPQ

	
nanopq.faiss_to_nanopq(pq_faiss)

	Convert a faiss.IndexPQ [https://github.com/facebookresearch/faiss/blob/master/IndexPQ.h]
or a faiss.IndexPreTransform [https://github.com/facebookresearch/faiss/blob/master/IndexPreTransform.h] instance to nanopq.OPQ.
To use this function, faiss module needs to be installed [https://github.com/facebookresearch/faiss/blob/master/INSTALL.md].

	Parameters

	pq_faiss (Union[faiss.IndexPQ, faiss.IndexPreTransform]) – An input PQ or OPQ instance.

	Returns

	
	Union[nanopq.PQ, nanopq.OPQ]: A converted PQ or OPQ instance, with the same codewords to the input.

	np.ndarray: Stored PQ codes in the input IndexPQ, with the shape=(N, M). This will be empty if codes are not stored

	Return type

	tuple

 Python Module Index

 n

 		 	

 		
 n	

 	
 	
 nanopq	

Index

 A
 | C
 | D
 | E
 | F
 | K
 | M
 | N
 | O
 | P
 | R
 | V

A

 	
 	adist() (nanopq.DistanceTable method)

C

 	
 	code_dtype (nanopq.OPQ attribute)

 	(nanopq.PQ attribute)

 	
 	codewords (nanopq.OPQ attribute)

 	(nanopq.PQ attribute)

D

 	
 	decode() (nanopq.OPQ method)

 	(nanopq.PQ method)

 	DistanceTable (class in nanopq)

 	Ds (nanopq.OPQ attribute)

 	(nanopq.PQ attribute)

 	
 	dtable (nanopq.DistanceTable attribute)

 	dtable() (nanopq.OPQ method)

 	(nanopq.PQ method)

E

 	
 	eigenvalue_allocation() (nanopq.OPQ method)

 	
 	encode() (nanopq.OPQ method)

 	(nanopq.PQ method)

F

 	
 	faiss_to_nanopq() (in module nanopq)

 	
 	fit() (nanopq.OPQ method)

 	(nanopq.PQ method)

K

 	
 	Ks (nanopq.OPQ attribute)

 	(nanopq.PQ attribute)

M

 	
 	M (nanopq.OPQ attribute)

 	(nanopq.PQ attribute)

 	
 	metric (nanopq.PQ attribute)

N

 	
 	nanopq (module)

 	
 	nanopq_to_faiss() (in module nanopq)

O

 	
 	OPQ (class in nanopq)

P

 	
 	PQ (class in nanopq)

R

 	
 	R (nanopq.OPQ attribute)

 	
 	rotate() (nanopq.OPQ method)

V

 	
 	verbose (nanopq.OPQ attribute)

 	(nanopq.PQ attribute)

 nav.xhtml

 Table of Contents

 		
 nanopq documentation

 		
 Tutorial

 		
 Basic of PQ

 		
 Decode (reconstruction)

 		
 I/O by pickling

 		
 Optimized PQ (OPQ)

 		
 Relation to PQ in faiss

 		
 API Reference

 		
 Product Quantization (PQ)

 		
 Distance Table

 		
 Optimized Product Quantization (OPQ)

 		
 Convert Functions to/from Faiss

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

